Ulam's Method for Lasota-Yorke Maps with Holes
نویسندگان
چکیده
Ulam’s method is a rigorous numerical scheme for approximating invariant densities of dynamical systems. The phase space is partitioned into connected sets and an inter-set transition matrix is computed from the dynamics; an approximate invariant density is read off as the leading left eigenvector of this matrix. When a hole in phase space is introduced, one instead searches for conditional invariant densities and their associated escape rates. For Lasota-Yorke maps with holes we prove that a simple adaptation of the standard Ulam scheme provides convergent sequences of escape rates (from the leading eigenvalue), conditional invariant densities (from the corresponding left eigenvector), and quasi-conformal measures (from the corresponding right eigenvector). We also immediately obtain a convergent sequence for the invariant measure supported on the survivor set. Our approach allows us to consider relatively large holes. We illustrate the approach with several families of examples, including a class of Lorenz-like maps.
منابع مشابه
Stability and Approximation of Random Invariant Densities for Lasota-yorke Map Cocycles
We establish stability of random absolutely continuous invariant measures (acims) for cocycles of random Lasota-Yorke maps under a variety of perturbations. Our family of random maps need not be close to a fixed map; thus, our results can handle very general driving mechanisms. We consider (i) perturbations via convolutions, (ii) perturbations arising from finite-rank transfer operator approxim...
متن کاملLasota-yorke Maps with Holes: Conditionally Invariant Probability Measures and Invariant Probability Measures on the Survivor Set
Let T : I ?! I be a Lasota-Yorke map on the interval I, let Y be a non trivial sub-interval of I and g 0 : I ?! R + , be a strictly positive potential which belongs to BV and admits a conformal measure m. We give constructive conditions on Y ensuring the existence of absolutely continuous (w.r.t. m) conditionally invariant probability measures to non absorption in Y. These conditions imply also...
متن کاملMemory Loss for Nonequilibrium Open Dynamical Systems
We introduce a notion of conditional memory loss for nonequilibrium open dynamical systems. We prove that this type of memory loss occurs at an exponential rate for nonequilibrium open systems generated by one-dimensional piecewise-differentiable expanding Lasota-Yorke maps. This result may be viewed as a prototype for time-dependent dynamical systems with holes.
متن کاملStronger Lasota-yorke Inequality for One-dimensional Piecewise Expanding Transformations
For a large class of piecewise expanding C1,1 maps of the interval we prove the Lasota-Yorke inequality with a constant smaller than the previously known 2/ inf |τ ′|. Consequently, the stability results of Keller-Liverani [7] apply to this class and in particular to maps with periodic turning points. One of the applications is the stability of acim’s for a class of W-shaped maps. Another appli...
متن کاملQuenched stochastic stability for eventually expanding-on-average random interval map cocycles
The paper [FGTQ14] established fibrewise stability of random absolutely continuous invariant measures (acims) for cocycles of random Lasota-Yorke maps under a variety of perturbations, including “Ulam’s method”, a popular numerical method for approximating acims. The expansivity requirements of [FGTQ14] were that the cocycle (or powers of the cocycle) should be “expanding on average” before app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 13 شماره
صفحات -
تاریخ انتشار 2014